
УДК 004.722

YURII KULAKOV
ALEXEY GOROBETS

ALGORITHM FOR CREATING BINOMIAL GRAPH TOPLOGY IN A FULLY CONNECTED

SYSTEM

In this paper we described an algorithm for the constructing binomial graph topology in a fully connected
system. Parallel execution of the algorithm parts form a ring topology, and then fill in lists of links to nodes, in
accordance with rules that describe binomial graph topology.

Creating binomial graph topology

For systems, which consist of a set of parallel

execution processes, an important parameter is the
delay in information sharing. Exchange of
messages between processes is done by the
executive environment. The configuration of the
environment should optimally distribute the load
on system nodes. As topology, which will reduce
the load on the transfer, was proposed binomial
topology graph [2]. Initially, the algorithm for
creating binomial graph topology [7] was created
for process tree topology. The choice of this
topology is not accidental - this topology is
actually very easy to create - the processes to solve
complex problems, or originally designed as a
multi-threaded create new threads that run on other
tasks. In the process of build a hierarchy of
processes, this is a tree.[1]

This decision is also due to the fact that at the
initiation of a parallel runtime environment for
which to build this topology, the boot loader
initially creates a process tree, which contains the
necessary information for the algorithm. Each
process in the tree has an ID of its parent process
(as an index or some unique value), the ID of the
child process.

In ring topology, each node knows the identity
of the node that follows it, and the ID of the
previous node. This topology distributes the
workload associated with the transmission of
messages between nodes. Also, each element of the
ring (in addition to information about the previous
and next nodes) formed two arrays that contain the
identifiers of nodes that are at power of 2 distances
from the node in the clockwise and counter-
clockwise.

Creating binomial graph topology from tree

topology

In order to create the topology described above

created algorithm, which can be divided into two

algorithms: an algorithm for creating a ring of
processes from the process tree, and the algorithm
to create a binomial graph of the ring topology [3,
6].

Algorithm creating ring processes topology
from the process tree is presented in [7].

First basic idea of that algorithm is to create a
chain of parents and their children first, and
connect those chains in the ring.

Chain creation is using rules 1 and 2 of
Algorithm 1. Rule 1 can be used by any process
that has at least one process-heir. When you run it,
the first process-successor is recorded as the next
process in the ring. When sending a message with
its identifier, the process sets itself as the previous
element of the ring for his first child process with
Rule 2.

Should be noted that the result is a chain with a
"leaf" of the tree on one end, and each leaf of the
tree will be the end point of any chain.

Combine chains in the ring is reduced to
searching for each "leaf" of the first free process to
set him as the next in the ring [5]. Rule 3 can be
used to the leaf of the tree, and as a result it will
post Info to the parent process. Rule 4 describes
how to react to the flow of the message Info.

During the second algorithm, each node
regularly sends the identifiers of its neighbors to
each other (Rule 1). When the process is the
process ID at 2i distance, it stores it in the
appropriate array, and sends it to a distance of 2i in
both directions.

Creating binomial graph topology in randomly

configuration system

In order to implement the algorithm in a system
that does not create a process tree program need
modification relations environment to create the
tree. Given the fact that the configuration of the
tree is not being critical of the algorithms described
above, the algorithm for constructing the tree

topology is reduced to the choice of the root node,
and steps of forming the branches of a tree.

To determine the root node will assume that the
algorithm of tree creation is performed in parallel
for each branch, respectively choose the root node
with the highest degree will give positive impact
on the configuration tree.

Tree creation algorithm will be next:
1) Find the node with the highest degree and de-

fine it as root node.
2) Define of all connected with the current node

nodes as child nodes in the tree.
3) All child nodes set this node as the parent

node in the tree. All child nodes are added to the
list.

4) While the list has at least one node:
- The first node in the list is as current;
- All the nodes that are directly connected with

the current, not marked as processed and are not in
the list is defined as a child of the current node;

- All the child nodes sets current node as the
parent node in the tree. All child nodes are added
to the list;

- Current node marked as processed and
removed from the list.

Main advantage of this algorithm is the lack of
an integrated network transformation. The tree is
formed on the basis of already existing
connections.

Algorithm for creating binomial graph topology

in a fully connected system

Algorithms described above are redundant for
strongly connected systems. It clearly manifested
in fully connected systems, as required for the
binomial graph connections are already present,
and the creation of intermediate topologies,
reconfiguring the system would be clearly
excessive. For such systems we need an algorithm
that will select the necessary links from existing,
and create relevant lists of clockwise and counter
clockwise neighbors for each node. Also, the
algorithm should run in parallel on each node,
which will accelerate the construction of binomial
graph topology.

Generally, for each of the N nodes to create two
lists - CW and CCW, which contain nodes at a
distance {(i+1) mod n, (i+2) mod n, … , (i+2k)
mod n | 2k <= n} and {(n-i+1) mod n, (n-i+2) mod
n, … , (n-i+2k) mod n | 2k <= n} [4].

 Connections between nodes at distance 1 form
a ring topology, the concrete realization of which is
not important for the formation of the rest of the
list.

Each individual node can form a link at a
distance of 2i for any two nodes at a distance of 2i-1
from it. Nodes receive a message that indicates the
node identifier and the distance to it, and set the
appropriate values in their CW and CCW lists.

Algorithm for creating binomial graph topology
in a fully connected system is consists of two parts.
The first part of the algorithm will randomly form
a ring topology, choosing neighboring nodes at a
distance of 1. The second part of the algorithm will
generate the appropriate lists CW and CCW for
each of the nodes.

Input data for the algorithm is a list of
identifiers of the available nodes of the current
node. Algorithm is executed in parallel on each
node in the topology.

Algorithm for creating binomial graph topology
in a fully connected system:

1) Send a random node request the presence of
"neighbor CW." If receipt of the answer is its Id set
up a node to which the request was send, as the
current "neighbor CW" and add it to the list of ID
CW.

 2) Pending for request the presence of
"neighbor CW". Upon receipt of such a request, if
the current "neighbor CCW" is not defined, set the
node that sent the request, as the current "neighbor
CCW", add the Id to the list CCW and send
identifier of current "neighbor CCW" in response.

3) Send Id of the current "neighbor CW" in the
node current "neighbor CCW".

Send Id of the current "neighbor CCW" in the
node current "neighbor CW".

4) Pending for receiving node id from current
"neighbor CW". Upon receipt of such, if received
Id not in CW list, and not equals to current
"neighbor CCW", then set the received Id as the
current "neighbor CW" and add it to the CW list.
Otherwise, set end flag true.

Pending for receiving node id from current
"neighbor CCW". Upon receipt of such, if received
Id not in CCW list, and not equals to current
"neighbor CW", then set the received Id as the
current "neighbor CCW" and add it to the CCW
list. Otherwise, set end flag true.

5) If end flag false, go to step 3.
 Steps 1 and 2 are the first part of the algorithm.

They are executed in parallel on all the nodes, and
randomly form the ring of nodes. Steps 3 and 4 are
performed in a loop, forming lists of CW and CCW
components, as long as it reaches the maximum
value of the distance ({(i+1) mod n, (i+2) mod n,
… , (i+2k) mod n | 2k <= n} and {(n-i+1) mod n,
(n-i+2) mod n, … , (n-i+2k) mod n | 2k <= n}). This

condition will be satisfied, when each node will
reach the most remote node according to the
structure of topology.

This algorithm will generate binomial graph to-
pology in a fully connected system more optimal
way. This is achieved by eliminating the interme-
diate transformations topology, the parallel execu-
tion of parts of the algorithm on each node.

Algorithm work example

To create binomial graph topology in fully

connected system of 8 nodes, algorithm described
above will perform the following steps. Each node
will have a unique identifier and a list of links to
all the nodes in the system. Figure 1 shows the
initial state of the system.

Fig. 1. The initial state of the system

 On the first stage, ring of process formatted

randomly. The result of the first stage is shown in
Figure 2.

Fig. 2. The result of the first stage of the

algorithm

As you can see, each of the nodes began to form
lists of neighboring nodes clockwise (CW) and
counterclockwise (CCW).

At the next stage of formation of these lists. In
the first step be added to the list of nodes that are at
distance 2. As described above, this is due to send
the current node from the list of neighboring nodes
on the left to the node that is currently on the list of
neighboring nodes on the right, and vice versa. The
result is a first step; the second part of the algo-
rithm is shown in Figure 3.

Fig. 3. The result of a first step, of the second

part of the algorithm

End condition is not true, so the next step of the
second part of the algorithm proceeds. The result
of his work is shown in Figure 4.

Fig. 4. The result of the second step of the
second part of the algorithm

As it shown in Figure 4, the current node from

the list of CW is also the current node in the list of

CCW, which is a condition of the completion of
the second part of the algorithm.

As a result of the algorithm in each node was
formed two lists of nodes, containing nodes at

distance 2k,, which actually creates a list of links for
the binomial graph topology.

References:

1. Sutter, H. Software and concurrency revolution / H. Sutter, J. Laurus // Queue. – New York: ACM, 2005. –

Vol. 3, № 7. – P. 54-62. – ISSN 1542-7730.
2. T. Angskun, G. Bosilca, and J. Dongarra. Binomial graph: A scalable and fault-tolerant logical network

topology. - Heidelberg: Parallel and Distributed Processing and Applications, ISPA 2007 - Vol. 4742/2007
of Lecture Notes in Computer Science - P. 471–482. Springer Berlin /.

3. Lemarinier P. Constructing Resiliant Communication Infrastructure for Runtime Environments / Pierre
Lemarinier George Bosilca, Camille Coti, Thomas Herault, and Jack Dongarra (University of Tennessee
Knoxville, Universite Paris Sud, INRIA) – 2009 P. 4-5.

4. Bacon, D.F. Compiler transformations for high performance computing / D.F. Bacon, S.L. Graham, O.J.
Sharp // ACM Computing Surveys. – New York: ACM, 1994. – Vol. 26, № 4. – P. 345-420. – ISSN 0360-
0300.

5. Hendren, L. J. Parallelizing programs with recursive data structures / L. J. Hendren, A. Nicolau // IEEE
Transactions on Parallel and Distributed Systems. – Piscataway, New Jersey, USA: IEEE Press, 1990. –
Vol. 1, № 1. – P. 35-47. – ISSN 1045-9219.

6. Herault T. A model for large scale self-stabilization. / Thomas Herault, Pierre Lemarinier, Olivier Peres,.
Laurence Pilard, Joffroy Beauquier // IEEE International on Parallel and Distributed Processing Symposium,
march 2007 - P. 1–10, - IPDPS 2007.

7. Bosilca, G. Constructing Resiliant Communication Infrastructure for Runtime Environments / George
Bosilca, Camille Coti, Thomas Herault, Pierre Lemarinier, Jack Dongarra // University of Tennessee
Knoxville University of Tennessee Knoxville, Universite Paris Sud, INRIA

