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Tasks execution with a common due date on parallel machines with optimality criteria: total earliness minimization regarding the due date and the tasks' start time execution maximization 
In the article the properties of the problem are researched to build a feasible schedule of tasks execution with a common due date for parallel machines with two simultaneous criteria of optimality: total earliness minimization regarding the due date and the tasks' start time execution maximization. The sufficient conditions of schedule's optimality are developed. The PDC-algorithm for the solution of the problem is given. 
1. Introduction
The considered problem refers to the scheduling theory which methods are used to optimize the operational and production schedules. In particular, the given PDC-algorithm for this problem solution is the part of an algorithmware of the third level of the four-level hierarchical model for scheduling and operational planning [1].
2. Formulation of the problem
Given a set of jobs 
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 is known. It is assumed that all jobs arrive at the same time and have a common due date 
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, the processing of each job runs to completion without interruption of jobs. Processing jobs on each machine is continuous.
The goal is to construct a feasible schedule for jobs j ( J (which means all jobs are not tardy) in which the jobs start time r is maximum or the total earliness of jobs with respect to the due date is minimum. The earlier results for this problem are given in [2, 3, 4].
3. Investigation of the problem properties
Theorem. For a feasible schedule the two optimality criteria are equivalent: first is the most late start time of jobs processing, and the second is the minimization of the total earliness with respect to the common due date.

Proof. Consider an arbitrary feasible schedule 
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 (figure 1).
Lemma. In a feasible schedule which is optimal by the first optimality criterion, 
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Proof. Let’s denote 
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 is the set of all feasible schedules.

In this case, in the feasible schedule 
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In the schedule 
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Corollary 1. An arbitrary feasible schedule 
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Corollary 2. In [4] the optimality criterion for this problem is considered to maximize the start time of jobs processing on identical parallel machines with the common due date. For this criteria the sufficient signs of optimality of a feasible solution were obtained.
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Fig. 1 – The schedule 
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Consider some schedule 
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Given this notations, the objective function has the form:
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Since the values of 
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We can show that there exists an optimal schedule that belongs to the schedule class 
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Consider some of the properties of schedules 
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Statement. For an arbitrary schedule 
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From this statement, taking into account the non-negativity of 
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Let b is the greatest common divisor (GCD) of processing times of jobs 
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For a schedule 
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In this case, it’s possible to construct a schedule with uniform load of machines.

Case III: 
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In this case, it’s impossible to construct a schedule with uniform load of machines.

Let’s formulate signs of schedules’ optimality which we should seek to fulfill [2].

Sign of optimality 1.
A feasible schedule which has 
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Sign of optimality 2.
A feasible schedule which has 
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On the basis of signs of schedules optimality let’s define the set of permutations that will allow to consistently improve the criterion value.
In view of the Theorem, these sufficient signs of optimality are also sufficient signs of optimality of a feasible schedule for the criterion of mi​ni​mization of the total earliness with respect to the common due date.

Corollary 3. For the criterion of maximization of the start time of jobs processing on identical parallel machines with the common due date the PDC-algorithm was given for the problem solution. This algorithm is also effective to solve the problem of the total earliness minimization with respect to the due date.
The Corollary 3 follows from the Theorem, Corollary 2 and the next Statement.

Statement. Let 
[image: image97.wmf]s

 is an arbitrary feasible schedule, and the time of machines start 
[image: image98.wmf])

(

s

r

 is 
[image: image99.wmf]0

)

(

*

³

s

-

T

d

, and the total earliness 
[image: image100.wmf])

(

s

S

 in this case equals to 
[image: image101.wmf]å

=

-

s

n

j

j

p

mT

1

*

)

(

.
Then any permutation that transforms a feasible schedule 
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 into a feasible schedule 
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Consequently, all the permutations of PDC-algorithm [4] that improve the value of the first criterion are the improving permutations also for the second criterion.
The statement is proved.

Since the PDС-algorithm [4] implements only improving permutations, so, based on sufficient signs of optimality of feasible solutions, we define the set of permutations that will allow to consistently improve the criterion value and will be the basis for the developed polynomial part of the PDC-algorithm for the problem solution.
The permutations that improve schedules
To improve a schedule we need to focus efforts to the reduction of the maximal lug 
[image: image112.wmf](

)

s

D

D

Î

i

I

i

max

. For this we propose to use permutations of jobs between machines: when some subset of jobs from the machine 
[image: image113.wmf]h

 (denote it as 
[image: image114.wmf](

)

s

h

K

, by definition 
[image: image115.wmf](

)

(

)

s

Í

s

h

h

J

K

) is swapped with a subset of jobs from the machine 
[image: image116.wmf]s

 (denote this subset as 
[image: image117.wmf](

)

s

s

L

, 
[image: image118.wmf](

)

(

)

s

Í

s

s

s

J

L

). Let’s denote as 
[image: image119.wmf]q

 the difference between the sums of processing times of jobs that take part in the permutation:
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Note that, as a result of such permutations applied to the current feasible schedule 
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Considering the conditions of execution and consequences, all permutations which lead to improving the schedule may be divided into four types that we will conventionally denoted as A, B, C, and D.
The generalized characteristics and properties of all kinds of permutations are shown in Table 1, and their detailed description is in the article [4].
The PDC-algorithm for the problem solution
On the basis of the signs of optimality and the developed set of permutations the algorithm is constructed for determining the maximum late start time of jobs in a feasible schedule on parallel machines with the common due date.

In [4] the detailed description of the algorithm is given. Let’s give its brief description. 
In the article [3] a greedy algorithm is given for constructing the schedule 
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The scheme of the algorithm
STEP 1. To build the initial schedule 
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STEP 2. Define sets 
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STEP 3. Checking the signs of optimality
IF any of the signs of optimality is true
THEN go to STEP 6 (
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 is optimal schedule).

STEP 4. Define the machine 
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STEP 5. For the machine 
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IF such permutations are not found THEN
5.1. For the machine 
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5.2. IF such permutations are not found
THEN go to STEP 6,
ELSE go to STEP 2.

ELSE go to STEP 2.
STEP 6. Define the maximum start time of jobs in the current schedule 
[image: image142.wmf]s

:  
[image: image143.wmf]-

=

d

r

)

(

s

 
[image: image144.wmf]))

(

max

(

*

s

i

i

C

D

+

-

.
END of the algorithm
Table 1. The characteristics and properties of permutations
	Permutation type
	Conditions of the permutation execution
	Characteristics of the resulting schedule 
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Possible implementations of STEP 5:

1) find the first permutation which improves the schedule and execute it;
2) enumerate all possible permutations, find among them the most effective one and execute it. 

The complexity of the algorithm is 
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If for the resulting schedule 
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 one of the signs of optimality is true then it is an optimal schedule. Otherwise, the objective function value of the schedule 
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4. Conclusion
The properties of the problem were researched to build a feasible schedule of tasks execution with a common due date for parallel machines with two simulta​ne​ous cri​teria of optimality: total earliness minimi​za​tion with respect to the due date and the maximization of the jobs start time. It is pro​ved that if the schedule is optimal for one of the criteria, it is automatically optimal also for the second criterion. The sufficient signs of schedules optimality are developed. The PDC-algorithm for the problem solution is given. 
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